

ALBA Status

Ferran Fernandez

On behalf of the Accelerator Division

Outline

Introduction & Beamlines status

- Operation
- Accelerator Developments

Introduction & Beamlines status

Layout

Parameter	Value
Energy	3 GeV
Circumference	268.8 m
Emittance	4.5 nm·rad
Current	250 mA
Rf frequency	500 MHz
# cavities	6
Long straights	4 (8 m)
Medium straights	12 (4 m)

Four Beamlines mainly dedicated to Chemistry, Physics - Condensed Matter

Near Ambient Pressure Photoemission

Four beamlines mainly dedicated to Life Sciences

Productivity

Operation

2018 Operation

ALBA Operations Calendar, January 2018-December 2018

BL operation	BL	BL users (external, friendly, in-house & commissioning)
bl operation	bl	BL/FE/ID Commissioning & Accelerator Optimization for BLs
Start-up	М	Start up of accelerators with beam & Accelerator's Studies
Warm-up	W	Warm: Linac & RF & magnets & sub-systems maintenace and optimisation
Shutdown	Off	Civil Engineering, Accelerators and BL maintenance with no beam, installations and upgrades
Public & CELLS holiday		

2018_calendari_v8_20180111.xlsx

	JANUARY			FEBRUA			N	MARCH			APRIL			MAY			JUNE			J	JULY			AUGUST			SETEME			OCT	OBER			NOVEMBE			DECEMBE		_
		Shift			Shiff			Shi				Shift			Shift			Sh				Shift			Shift			Shift			Sh				Shift			Shift	
eekday					ay M	A N	Week	N.	1 A	N We	ek Day	M A	N N	Week	M	A	N Week	Day	M A	N V	Week Day	M	A N	Week Day	/ M	A N	Week Da	ay M	I A					Week Day	M	A N	Week Day	M /	A
)			W W																											4	0 1 P	s W							
1			W W													W															2 P	s W							
e			W W												2 PSS	W										Off Off						v w							
1			w w			. BL BL	1		L BL						3 PSS	W										Off Off					4 V					W W			
			w w		2 BL	. BL BL		2 B	L BL	BL					4 W	W	W	1 E	BL BL	. BL						Off Off					5 V	v w	W		2 W	W W			
1			w w			. BL BL			L BL							W			BL BL							Off Off						v w				W W		W V	
1			w w	4	4 BL	. BL BL		4 B	L BL	BL		W V	/ W			W			BL BL		1	BL E				Off Off						v w			4 W	W W		W V	
0	2 8	B W	w w	6 5	5 M	M M	10	5 N	1 M	M	14 2	W V	/ W	19	7 M	M	M 23	4 s	PR W	W	27 2	W V	w w	32	6 Off	Off Off	36	3 M	l M	M 4	1 8	и м	M	45	5 M	M M	49 3	M I	М
ı		w e	w w		5 BL	BL BL		6 B	L BL	BL	3	w v	/ W		8 BL	BL I	3L	5 s	PR W	w	3	W Y	w w		7 Off	Off Off	•	4 M	I M	М	9 E	L BL	BL		6 BL	BL BL	4	BL B	3L
е	10	w	w w	1 7	7 BL	BL BL	1	7 B	L BL	BL	4	M N	1 M	1	9 BL	BL B	3L	6 1	v w	w	4	W Y	w w		8 Off	Off Off	•	5 BL	BL	BL	10 E	L BL	BL		7 BL	BL BL		BL B	3L
	11	1 W	w w	8	BL	BL BL		8 B	L BL	BL	5	M N	I M			BL E		7 1	v w	W	5	W V	w w		9 Off	Off Off	•	6 BL	BL	BL		L BL	BL		8 BL	BL BL	- 6	BL E	
	12	2 W	w w	9	9 BL	. BL BL	1	9 B	L BL	BL	6	BL B	L BL		11 BL	BL B	3L	8 \	v w	w	6	W I	w w	1	10 Off	Off Off	•	7 BL	BL	BL	12 E	L BL	BL		9 BL	BL BL	7	BL B	3L
	13	3 W	w w	1	0 BL	. BL BL		10 B	L BL	BL	7	BL B	L BL		12 BL	BL B	3L	9 1	v w	W	7	W V	w w		11 Off	Off Off	•	8 BL	. BL	BL	13 E	L BL	BL	1	0 BL	BL BL		BL B	3L
	14	4 W	w w	1 1	1 BL	. BL BL	1	11 B	L BL	BL	8	BL B	L BL		13 BL	BL I	3L	10 \	v w	w	8	w v	w w	1	12 Off	Off Off	•	9 BL	BL	BL	14 E	L BL	BL	1	1 BL	BL BL		BL B	3L
)	3 19	5 W	w w	7 1	2 M	M M	11	12 N	I M	М	15 9	M N	I M	20	14 M	M	M 24	11	и м	M	28 9	M	м м	33 1	13 Off	Off Off	37	10 M	M	M 4	2 15	и м	М	46 1	2 M	M M	50 10	M I	м
	16	s w	w w	1	3 BL	. BL BL		13 B	L BL	BL	10	BL B	L BL		15 BL	BL B	3L	12 E	BL BL	. BL	10	BL E	BL BL	1	14 Off	Off Off		11 BL	. BL	BL	16 E	L BL	BL	1	3 BL	BL BL	11	BL B	3L
			M W			. BL BL	1		L BL			BL B				BL I			BL BL			BL E				Off Off			BL			L BL				BL BL		BL B	
	18	В М	M W			BL BL	1		L BL			BL B				BL I			SL BL		12	BL E	BL BL	_	16 Off	Off Off	•	13 BL	BL	BL		L BL		1	5 BL	BL BL	13	BL B	3L
	19	M	M M	1	6 BL	BL BL	1		L BL		13	BL B	. BL		18 BL	BL B	3L	15 E	BL BL	BL	13	BL E	BL BL		17 Off	Off Off		14 BI	BL	BL.	19 E	L BL	BL.	1	6 BL	BL BL	14	BL E	3L
	20	M	M M			BL BL	_		L BL			BL B				BL I			BL BL			BL E				Off Off			BL			L BL				BL BL		BL B	
	21	М	M M	1	8 M	M M		18 M	ı M	м	15	M N	ı M	•	20 M	М	м	17 F		BL		BL E			19 Off	Off Off			BL			L BL				BL BL		M I	
1	4 22	2 M	M M	8 1	9 W	w w	12	19 B	L BL	BI	16 16	M N	ı M	21	21 M	M	M 25	18	и м	M	29 16	М	м м	34 2	20 PSS	w w	38	17 M	M	M 4	3 22	и м	М	47 1	9 M	M M	51 17	BL B	41
			BL BL		0 W				L BL	BI		BL B				BL B			SL BL			BL E				w w			BL			L BL				BL BL		BL B	
			BL BL		1 W				L BL			BL B				BL B			SL BL			BL E				w w			BL			L BL				BL BL		BL B	
			BL BL		2 W				L BL			BL B				BL E			BL BL			BL E				w w			BL			L BL				BL BL		BL B	
			BL BL			w w	1	23 B	L BL	BI		BL B				BL E			BL BL			BL E				w w			l bl			d bl				BL BL		W V	
			BL BL			w w			/ W			BL B				BL I			BL BL			BL E				w w			bl			ol bl				BL BL		W V	
			BL BL			w w			/ W			BL B				BL E			SL BL			BL E				w w			M			A M				м м		w v	
			M M			M M	13	26 V				M N				M			M M			Off C				w w			l M			L BL				BL BL		W V	
			BL BL			. BL BL			, w			BL B				BL B			BL BL			Off C				w w			. BL			L BL				BL BL		w v	
			BL BL			BL BL	1	28 V				BL B				BL I			BL BL			Off C				w w			BL			L BL				BL BL			w
'		· ·	DE DE	1 -	0	. DL DL	1		, w			BL B				BL E			BL BL			Off C				M W			L BL		0, 0	L DL	-			M M		w v	
								30 V				BL B			JI DE	DL I			BL BL			Off C				M W			BL							w w		w v	
				+			_		/ W			BL B					_		BL BL			Off C		-	Jul IVI	W VV			. BL				-		V VV	** **		W V	
								31 V	* **	**		BL B						30	T DL	. DL		Off C							L BL									W V	
				+			+			_	18 30						_			\rightarrow	31 30						+	30 BL	- DL	OL.			-					W V	
											10 30	vv V	· vv									Off C															3	VV V	
																					31	Oil C	лі Оп																
18 versio 8.0																																							_

BL [h]	4680
M [h]	1216
SPR [h]	16
CSN [h]	0
TOTAL [h]	5912 h

Up to **12/11/2018**3984 h for BLs scheduled **85 % of 2018 beam**

Beam Availability (until 12/11/2018)

Mean time between failures (until 12/11/2018)

Mean time to recover (until 12/11/2018)

MTTR_2018: 2.05 h

No beam events (until 12/11/2018)

Down time main single events

Component	Down Time	%	Comment
PS	11.6 h	19%	1 x SR_BEND_PC
ОТ	11.8 h	19%	strike (08/03/2018)
INF	8.7 h	11%	Cooling failure (PLC communications module failed)
PS	8.4 h	14 %	1 x BO_PC (PC failure, then RF trips the beam, no injection possible) (recurrent problem due to thermal cycling. Purchasing of new modules ongoing)

These four events represent 50% of the down time

After the start of operations at 200mA: recurrent quenches

 Observe that above 150mA & depending on filling pattern, there is always heat dissipation on the liner. Continuous increase of cryostat temperature.

Is there contact between the liner and the I-He tank? LINER

Re-alignment of the liner wrt l-He tank

Operate SR with lower charge per bucket:

From 320 to 416 bunches

Operate at reduced RF voltage:

To enlarge bunch length

Warm-up and visual inspection done on Jan'18

Magnets

- Since June operation at low current (150mA) and at full magnetic field
- Since then magnet operating temperature <4 K. No quenches, no boiling of l-He
- Repair in January 2019

2. Che	CKS AND IMPROVEMENTS TO BE DONE	3
2.1.	EXTRACTION OF LINER AND CHECKING OF VACUUM CHAMBER CLEARANCE	3
2.2.	Upgrade of the isolation of liner to vacuum chamber	4
2.3.	REPLACEMENT OF RF CONTACTS	5
2.4	IMPROVEMENT OF SAFETY VALVE CONNECTION	5

Intervention foresee (BINP availability)
8 – 20 January 2019

Accelerator Developments

RF upgrade - Booster 48kW SSA

In operation since 21st August 2018

The change had no impact on the operation

Redundancy: 2/12 modules can fail. Hot swap

Operating frequency:	499.654 MHz
Nominal output power (1dB compression):	40 kW
Output power (2dB compression):	48 kW
Nominal duty cycle:	CW
Gain:	>78dB.
Transmitter efficiency:	>60%.
RF power with one module off:	40kW.
Quick fittings for cooling connection.	
Power supplies efficiency:	>95%.

Libera SPARK Single Pass

- BPM electronics for LINAC and LTB were upgraded to Sparks
- They are now up and running
- Resolution improved from 'mm' downto tens of 'um' in Single Bunch Mode

Booster PS warm up in DC

Booster PS warm up in DC

Fast Beam Based Alignment

Proceedings of IPAC2018, Vancouver, BC, Canada

- Pre-Release Snapshot 27-May-2018 12:00 UTC

FAST QUADRUPOLE BEAM BASED ALIGNMENT USING AC CORRECTOR EXCITATIONS

Z. Martí*, G. Benedetti, U. Iriso, ALBA-CELLS Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallés, Spain

Beam2bpm:

- Slow (Both CM and quads are scanned, ~5h at ALBA!)
- Model independent, no need to correct after each measurement.
- There is a systematic error in case of large misalignments depending on the orbit angle.

- 10kHz Fast Acquisition Archiver
- AC corrector magnets excitation.

The intersection of each BPM couple relation when the quadrupole is changed is the **offset**.

Fast Beam Based Alignment

Perfect correlation between standard BBA & Fast BBA

- The FBBA is ~ 30 times faster (10 min vs 5h) than the standard BBA.
- The level of accuracy is similar.

LOREA ID distortion

- Low energies, long period: EU125
 - Tune shift
 - Dynamic aperture

 Correction scheme is based on two thin foils (<0.5mm) with 8 printed cables (cross section 3x0.3mm) placed on the Al chamber

LOREA ID distortion

Dynamic aperture

Dyn. Aper. & Inj. Eff.

Lorea's ID Minimum gap Injection efficiency test

Phase	Inj Eff
Н	90.92%
С	88.62%
V	52.15%
V(step tune [+0.015 0])	47.06%
V(step tune [0 -0.012])	59.59%

Correction will be needed

Pol. Mode. Δ*O* [1e-2] Δ*B*/*B*

Tune Feedback

Pol. Mode.	ΔQ [1e-2]	$\Delta\beta/\beta$ [%]
$EPU125_H$	0.31/0.07	1.98/0.35
$EPU125_C$	-0.60/0.63	4.02/3.39
$EPU125_V$	-1.48/1.15	10.60/6.41
$EPU125_H + strips$	0.18/0.15	1.17/0.81
$EPU125_C + strips$	0.15/0.13	0.98/0.67
$EPU125_V + strips$	0.02/0.19	0.15/1.00

- We have **launched a study** aimed to determine and **correlate electron** beam motion, concrete slab motion and ground motion at different time scales.
- Set an interdisciplinary working group to put in common and share knowledge in different areas relevant for this topic (Survey & Alignment, BPMs, XBPMs), reanalyze from a new point of view data stored up to now, and propose new sets of measurements to shed light on it.
- Several observables followed now for 2 runs.

- RF frequency follows the oscillations of the external meteorological parameters, with two main periodicities: 1 year and 1 day.
- On top the periodic oscillations of the RF frequency, it exists a monotonic decrease
 with time. May it be associated to long-term deformations of the ground not linked to
 thermal-driven expansion/contraction cycles? (settlement of soil). Apparently this
 drift is decreasing with time.

Beam transversal position

- BPMs not on the FOFB
- 1 x standard support (bracket to the girder)
- 1 x invar column (1/10 thermal expansion coefficient of steel)

BPMs not in the FOFB						
ВРМ	rms (1 week)					
X Standard support	1.5 um					
X Invar support	0.6 um					
Y Standard support	0.8 um					
Y Invar support	0.3 um					

SR RF Acceptance

Energy acceptance								
Vrf	energy acceptance measurement	energy acceptance theory						
500kV/Cav	3,06	3,06						
370kV/Cav	2,33	2,27						
230kV/cav	0,9	1,04						

Speckle beam size measurements

PSA: Speckle measurements at NCD, 16-July-2018

ALBAII

Started to study a baseline hybrid 7BA + Anti Bend cell preserving circumference and energy; without longitudinal gradient in bending magnets.

$$\epsilon_x$$
= 160 pm·rad
16 identical cells - 16 straight sections
 L_{ss} = 4.35 m
 β_x = β_v = 1.5 m

PostDoc position foresee for 2019

PostDoc position foresee for 2019

International Collaborations

H2020 - XLS

Compact

- 1st Annual Meeting hosted by ALBA, 10 12 Dec 2018
- → Post Doc
- FCC-CERN HTS-BS-FCC
- → PhD student
- EU H2020 Project EuroCirCol
- → PhD student
- Collaboration with CLIC-CERN
- H2020 ARIFS ADA
- → Fast Feed Back Workshop hosted by ALBA, 12 -14 Nov 2018
- ESRF EBS BPM tool
- SIRIUS Digital LLRF

HTS Coated Conductors for FCC beam screen

HTSCC-Beam Screen Proposal

THANK YOU FOR YOUR ATTENTION

And thanks to the Accelerator Division

