ESLS 2018

Krakow, 27-28 November 2018

Injection perturbation mitigation at ESRF E.Plouviez

On behalf of : S. White, M. Dubrulle, P. Henrissat, C. Richard, B. Roche, E. Plouviez, L. Farvacque, P. Raimondi, G. Le Bec, M. Morati, J. Chavanne, B. Ogier, ALGE

The European Synchrotron

ESRF TODAY

HSPLINE CRG) DUBBLE CRG) DUBBLE CRG) DUBBLE CRG)	Central Building D20 01:00 F/F + FP.ME_CRG1 BM32 0F CRG1 ID01	Storage ring 6GeV, 844 m			
SPANS	32 1 2 BM01 SWNOR	Energy	GeV	6.04	
T BRAZS		Multibunch Current	mA	200	
1000	Booster nchrotron	Horizontal emittance	nm	4	
BIN BIN		Vertical emittance	pm	3.5	
BATI 20 BATI 200 MeV	Booster synchrotron 200 MeV → 6 GeV 300m, 10 Hz	and a strain of the strain of	32 straight sections DBA lattice 42 Beamlines 12 on dipoles 30 on insertion devices 72 insertion devices: 55 in-air undulators, 6 wigglers, 11 in-vacuum undulators, including 2 cryogenic		
1015/	BUDIAN			选	

ESRF

The European Synchrotron

TOP UP OPERATION

ESRF top up operation scheme: one refill every 20 minutes

Example of a storage ring filling mode

at each refill we want to have the buckets of the gaps in the filling pattern perfectly clean of parasitic electron

Cleaning method: parasitic bunches elimination

Beam position at turn n: $z_n = z_0 \sin (2\pi v_z^* n)$

Kick at turn n: $z_n = z_0 \cos(2\pi v_z^* n)$

We neglect the decoherency due to ξ

PARASITIC BUNCHES SELECTION : TIME DOMAIN SELECTION

stripline gated shaker setup

Stored beam vertical perturbation and temporary gap pollution:

Parasitic bunches cleaning when performed in the SR => temporary gap buckets pollution, parasitic main bunches transverse excitation...

Stored beam horizontal and vertical perturbation:

Parasitic kick and transient beta perturbation due to the injection

Stored beam vertical perturbation and temporary gap pollution:

Parasitic bunches cleaning when performed in the SR

Solution :

Cleaning performed in the booster

Page 7 XXVI ESLS worshop Krakow E.Plouviez

BOOSTER BUNCH CLEANING PRINCIPLE AND SET UP

Injection energy: 200meV

- Cleaning performed at 600meV
- Scrapper opening +/-16mm

example of a cleaning signal (blue) with no DC component over 2 revolutions, for $v_{\rm H}$ =.2 and four bunches(red: injection kicker signal, pink: bunches)

high power amplifier signal (phase transition)

5

INJECTION INTO THE STORAGE RING

ESRF

INJECTION INTO THE STORAGE RING

Injection pulsed magnets:

- **Septa:** fringe fields, depends on field strength and distance to the stored beam dominated by S1/2. Un-shielded current leads
- **Kickers:** bump non-closure, 4 identical kickers pulse shape (timing, pulse shape,...)

• Storage ring:

•

- Sextupoles inside the bump: non closure, envelop oscillations
- Vertical perturbations also observed:
 - Coupling, misaligned elements,...
- Now running in top-up mode: significant effort ongoing to reduce these perturbations
- Goal: allow for continuous beam line data acquisition over injection

PERTURBATION OBSERVED ON THE HORIZONTAL BEAM POSITION

Injection pulsed magnets:

- **Septa:** fringe fields, will cause a 2ms bell shape orbit perturbation
- **Kickers: the** bump non closure causes a position oscillation at the betatron frequency with the intra turn pattern showing the rise time- flat top- fall time related pattern.

In addition: focusing change during the kickers pulse => enveloppe oscillation due to the sextupoles.

 Vanishing with same time constant as radiation damping time

SEPTUM PERTURBATION CANCELLATION:

using the fast orbit feedback in feedforward mode...

Correction calculated with the normal orbit correction matrix :

Will use mostly two correctors

The correctors bandwidth is 500Hz but he feedback bandwidth is 150Hz:

The correction will be produced with a delay of about 2ms => no effect!

Correction signal from a lookup table triggered a each injection

6 CORRECTORS BUMP CANCELLING THE SEPTUM LEAK

TIME DOMAIN WAVEFORM USED TO MODULATE THE CORRECTION KICKS

Orbit correction: feedforward correction

MAXIMUM ORBIT PERTURBATION DURING THE SEPTUM PULSE

SEPTUM COMPENSATION

- Fully operational since last year
- Uses FOFB system
- Correction slightly improved to reduce the residual excitation after few 1000 turns
- Peak residual oscillation (rms orbit):
 - ~10-15μm in horizontal
 - ~2-5μm in vertical

KICKERS PERTURBATION

- Sextupoles are located inside the injection bump:
 - B_v(x) evolves quadratically
 - Amplitude (time) dependent orbit distortion
 - Amplitude (time) dependent βbeat
- \rightarrow Both resulting in apparent emittance increase

THE POOR MANS ALTERNATIVE TO A MULTIPOLE INJECTOR KICKER

PASSIVE AND ACTIVE COMPENSATION OF THE SEXTUPOLES EFFECT

KICKER PASSIVE COMPENSATION

- Idea: add copper shims inside the kickers ferrite gap to generate a non-linear field
- Shape this field with the shims dimension in order to cancel the sextupole field: reduction of both beta-beat and orbit distortions
- Creates vertical field gradient: alignment is
 now critical

• Ideal conditions and 18mm bump amplitude, simulations indicate a factor 3 improvement

EXPERIMENTAL RESULTS

- In reality the bump is approximately 16mm or less to allow single bump injection:
 - Compensation efficiency
 (field derivative) reduced
- Data renormalized for 16mm
 bump amplitude in all case:
 - Peak perturbation reduced by a factor ~2
 - Very consistent with simulations giving ~2.5
- Further improvement with shims very difficult:
 - No space for thicker plates
 - Reaching maximum kicker current
- Look into other solution...

BEAM SIZE OSCILLATIONS

- The stored (bumped) beam sees an additional quadrupole during injection driving beam size oscillations all around the ring:
 - apparent emittance blow-up ۲
 - Copper shims already reduce it by a • factor 2
- It is however possible to cancel the field ٠ derivative at a given amplitude using a combination of multipoles:
 - **Reduces both dipole and quadrupole** ٠ perturbation
 - Example: octupole + sextupole ٠
- Decision was taken to investigate the possibility of using an octupole for ESRF

OCTUPOLE DESIGN

- The octupole was made in-house using insertions devices ٠ permanent magnets
- Strength chosen based on simulation, no tuning possible ٠
- Gain of a factor 2 both in dipole and quadrupole ٠ perturbation

30

ESRF

VERTICAL COMPENSATION

- Introduction of non-linear kicker field degraded the vertical stability:
 - The stronger the shims the more sensitive we are to misalignment
- Several alignment iterations:
 - Perturbation reduced but not stable over time
- Use skew quadrupoles (from correctors) inside to correct these errors:
 - Successful implementation, adjustable
 - Very efficient on flat-top, much less on the ramps
- Need additional active compensation

REQUESTED BANDWITH: around 1 MHz REQUESTED KICKER STRENGTH: 6µrad (H) and 2µrad (V)

STRIPLINE KICKERS: .5µrad MAGNETIC KICKERS: 4µrad

BUT ONLY ONE STRIPLINE OR MAGNETIC KICKER AVAILABLE => no closed bump correction possible

> TRANSVERSE DAMPING TIME : 6ms => a perturbation suppression obtained over A few 2.8µs revolutions would still be very beneficial. And it reduces also the necessary kicker strength

SR magnetic shaker

- 400W amplifier => 4 A peak current
- 6 coils
- Set up bandwidth: 1 MHz
- 6 Gev beam, B field effect => 4 μrad peak /turn

THE BUNCH BY BUNCH FEEDBACKS ARE INEFFECTIVE:

The Damping time is too long (30 turns) =>

The high vertical and horizontal chromaticity results in a fast decoherence

FEEDFORWARD SOLUTION:

Correction applied over a small number of turn at the maximum kicker power

Extra constraint:

No DC component in the correction signal (due to the amplifier bandwidth):

Correction duration equal to an integer number of betatron periods

=> Vertical correction signal: 5 turns (v_v =.39)

=> Horizontal correction signal: 9 turns (v_H=.44)

PERTURBATION SHAPE MEASUREMENT:

- BPM pick up:
- 4 buttons with RF matching transformers
- Signal processor:
 ADC data from an Itech Spark =>
 304 samples per turn,10000 samples

For each of the 304 samples we get the amplitude and phase of the perturbation over 9 turns (horizontal) or 5 turns (vertical), assuming it is an oscillation at the betatron frequency, and we use these data and the phase shift between the BPM pick up and the corrector to calculate a correction signal

DAMPING OF THE HORIZONTAL PERTURBATION OVER 9 TURNS

rms oscillation: Without active damping: 100μm with damping: 50μm normal beam size: 350μm

DAMPING OF THE VERTICAL PERTURBATION OVER 5 TURNS

rms oscillation: without active damping: 25μm with damping:10μm normal beam size: 15μm

IMPROVED DAMPING OF THE VERTICAL PERTURBATION BY ADDING A STRIPLINE

Left : damping with the shaker Right: damping using the shaker and the stripline

THE REFILLS IN TOP UP OPERATION ARE NOW TRANSPARENT ACCORDING TO MOST OF OUR USERS

WE GAINED EXPERIENCE FOR THE EBS FUTURE OPERATION (TOP UP WILL BE MANDATORY)

Page 32 XXVI ESLS worshop Krakow E.Plouviez

KICKER BUMP

- The ESRF-EBS ring features a new injection cell and bump layout
- The principle and kickers power supplies are the same: 4 independent kickers bump + invacuum septum, no stability improvement to be expected
- Main difference: no sextupoles at large bump amplitude, present limiting factor strongly reduced

PERTURBATIONS

- Sextupoles in the bump introduce an average perturbation of ~10-15 μ m in the IDs (0.3-0.5 σ)
- 2 correctors in the injection cell see the full bump amplitude:
 - They can be powered as sextupoles without removing any functionalities
 - The 2 phases provide almost perfect cancellation of the perturbation
 - Purchase of additional power supplies and cables approved, integration in the control system to be discussed

KICKERS POWER SUPPLIES

- Kickers power supplies random fluctuations will be the most critical source of perturbation
- Slowing down the ramps, reduces the sensitivity to such errors
- Tolerance required to remain well below 1σ very tight (~1.0ns)
 - Prototyping launched to understand feasibility of such tolerances

ESRF

WHAT CAN BE EXPECTED FOR ESRF-EBS?

- The absence of sextupoles at large bump amplitude will strongly reduce the perturbations by design:
 - The remaining can be compensated passively using a pair of sextupole correctors in the injection zone
- The septa perturbation is mitigated by replacing an EM by a permanent magnet:
 - The active compensation will still be operational
- Perturbations will be dominated by kickers power supplies random fluctuations:
 - Conceptual design for new power supplies ongoing
 - Prototyping should start this year
- Overall the absolute perturbation will be smaller, however the horizontal beam size will also be smaller (different ratios for high/low-β insertions):
 - The vertical plane should similar or better
 - In the horizontal plane, including all foreseen improvements 1σ level perturbation seems to be within reach
- The remaining residual oscillations will be of the order of few 10μm:
 - Random fluctuations
 - We need to devise a feedback system: can it be tested on this machine?

